Weighted values and the core in NTU games

Koji Yokote*


研究成果: Article査読

1 被引用数 (Scopus)


Monderer et al. (Int J Game Theory 21(1):27–39, 1992) proved that the core is included in the set of the weighted Shapley values in TU games. The purpose of this paper is to extend this result to NTU games. We first show that the core is included in the closure of the positively weighted egalitarian solutions introduced by Kalai and Samet (Econometrica 53(2):307–327, 1985). Next, we show that the weighted version of the Shapley NTU value by Shapley (La Decision, aggregation et dynamique des ordres de preference, Editions du Centre National de la Recherche Scientifique, Paris, pp 251–263, 1969) does not always include the core. These results indicate that, in view of the relationship to the core, the egalitarian solution is a more desirable extension of the weighted Shapley value to NTU games. As a byproduct of our approach, we also clarify the relationship between the core and marginal contributions in NTU games. We show that, if the attainable payoff for the grand coalition is represented as a closed-half space, then any element of the core is attainable as the expected value of marginal contributions.

ジャーナルInternational Journal of Game Theory
出版ステータスPublished - 2017 8月 1

ASJC Scopus subject areas

  • 統計学および確率
  • 数学(その他)
  • 社会科学(その他)
  • 経済学、計量経済学
  • 統計学、確率および不確実性


「Weighted values and the core in NTU games」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。