When digital twin meets deep reinforcement learning in multi-UAV path planning

Siyuan Li, Xi Lin*, Jun Wu*, Ali Kashif Bashir, Raheel Nawaz

*この研究の対応する著者

研究成果: Conference contribution

14 被引用数 (Scopus)

抄録

Unmanned aerial vehicles (UAVs) path planning is one of the promising technologies in the fifth-generation wireless communications. The gap between simulation and reality limits the application of deep reinforcement learning (DRL) in UAV path planning. Therefore, we propose a digital twin-based deep reinforcement learning training framework. With the help of digital twin, DRL model can be trained more effectively deployed to real UAVs. In this training framework, we propose a deep deterministic policy gradient (DDPG) based multi-UAV path planning algorithm. Based on decomposed actor structure in DRL, we design a pooling-based combined LSTM network to better understand different state information in a multi-UAV path planning task. Moreover, we also establish a digital twin platform for multi-UAV system, which has a high degree of simulation and visualization. The simulation result shows that the proposed algorithm can achieve higher mean rewards, and outperforms DDPG in average arrival rate by more than 30%.

本文言語English
ホスト出版物のタイトルDroneCom 2022 - Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond
出版社Association for Computing Machinery, Inc
ページ61-66
ページ数6
ISBN(電子版)9781450395144
DOI
出版ステータスPublished - 2022 10月 17
外部発表はい
イベント5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, DroneCom 2022 - Sydney, Australia
継続期間: 2022 10月 21 → …

出版物シリーズ

名前DroneCom 2022 - Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond

Conference

Conference5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, DroneCom 2022
国/地域Australia
CitySydney
Period22/10/21 → …

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 情報システム

フィンガープリント

「When digital twin meets deep reinforcement learning in multi-UAV path planning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル