Wireless Coded Distributed Learning with Gaussian-based Local Differential Privacy

Yilei Xue*, Xi Lin*, Jun Wu, Jianhua Li*

*この研究の対応する著者

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

Differentially private distributed machine learning protects privacy by injecting artificial noise to the computing results. To further improve energy efficiency, the natural noise in the wireless environment can be used to protect privacy. In this paper, we study the problem of coded distributed machine learning over Gaussian multiple-access wireless channels to achieve differential privacy by exploiting the natural noise. Firstly, we propose an aggregation scheme using differentially private Lagrange encoding in a wireless environment, where the local computing results are uploaded to the master through orthogonal channels. Then, we develop an achievable privacy protection level to illustrate the impact of transmit power and power allocation on privacy. Additionally, we establish a theoretical convergence upper bound of the proposed scheme, providing a clear understanding of the potential limitations and capabilities of the system. Finally, we demonstrate a trade-off between system resource settings, convergence, and privacy protection levels through experiments. Specifically, increasing the signal-to-noise ratio (SNR) and power allocated for gradient computation leads to a decrease in the privacy protection level of the system and an increase in training accuracy. Moreover, reducing the dataset partitions results in better training accuracy.

本文言語English
ホスト出版物のタイトル2023 IEEE International Symposium on Information Theory, ISIT 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1943-1948
ページ数6
ISBN(電子版)9781665475549
DOI
出版ステータスPublished - 2023
外部発表はい
イベント2023 IEEE International Symposium on Information Theory, ISIT 2023 - Taipei, Taiwan, Province of China
継続期間: 2023 6月 252023 6月 30

出版物シリーズ

名前IEEE International Symposium on Information Theory - Proceedings
2023-June
ISSN(印刷版)2157-8095

Conference

Conference2023 IEEE International Symposium on Information Theory, ISIT 2023
国/地域Taiwan, Province of China
CityTaipei
Period23/6/2523/6/30

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 情報システム
  • モデリングとシミュレーション
  • 応用数学

フィンガープリント

「Wireless Coded Distributed Learning with Gaussian-based Local Differential Privacy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル