Zero temperature limit for interacting Brownian particles. I. Motion of a single body

Tadahisa Funaki*

*この研究の対応する著者

研究成果: Article査読

7 被引用数 (Scopus)

抄録

We consider a system of interacting Brownian particles in ℝ d with a pairwise potential, which is radially symmetric, of finite range and attains a unique minimum when the distance of two particles becomes a > 0. The asymptotic behavior of the system is studied under the zero temperature limit from both microscopic and macroscopic aspects. If the system is rigidly crystallized, namely if the particles are rigidly arranged in an equal distance a, the crystallization is kept under the evolution in macroscopic time scale. Then, assuming that the crystal has a definite limit shape under a macroscopic spatial scaling, the translational and rotational motions of such shape are characterized.

本文言語English
ページ(範囲)1201-1227
ページ数27
ジャーナルAnnals of Probability
32
2
DOI
出版ステータスPublished - 2004 4月
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Zero temperature limit for interacting Brownian particles. I. Motion of a single body」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル