Zero-Trust Empowered Decentralized Security Defense against Poisoning Attacks in SL-IoT: Joint Distance-Accuracy Detection Approach

Rongxuan Song, Jun Wu*, Qianqian Pan*, Muhammad Imran, Niddal Naser, Rebet Jones, Christos Verikoukis

*この研究の対応する著者

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Swarm learning (SL) exploits the blockchain to realize a federated and decentralized learning, which is very suitable for internet of things (IoT). Different from FL using central server to update global parameter, SL using edge node (header) to do that. However, poisoning attack is also an unresolved problem to SL. Because if header is malicious, it can pollute global parameter more easily than edge nodes. Moreover, there are following important limitations in existing defense schemes for FL, which cannot be used in SL directly. First, existing defense schemes focus on building a whitelist, which obstructs the decentralization because it can just provide decentralization in honest nodes instead of all of nodes. Second, existing schemes just consider poisoning attacks from edge nodes, they cannot defend attacks from header. Third, most existing schemes will let server execute the defense algorithm, but in SL, malicious header can return wrong defense results to deceive managers. To address above challenges, in this paper, we propose a protection system that leverages the concept of zero-trust architecture for SL, which achieves continuous risk calculation, analysis of learning behavior and abnormal parameter detection based on Manhattan distance and accuracy difference of parameters. We also evaluate the performance in the presence of random and customized malicious edge nodes. Experimental results demonstrate that our scheme can achieve higher accuracy than the other existing schemes.

本文言語English
ホスト出版物のタイトルGLOBECOM 2023 - 2023 IEEE Global Communications Conference
出版社Institute of Electrical and Electronics Engineers Inc.
ページ2766-2771
ページ数6
ISBN(電子版)9798350310900
DOI
出版ステータスPublished - 2023
イベント2023 IEEE Global Communications Conference, GLOBECOM 2023 - Kuala Lumpur, Malaysia
継続期間: 2023 12月 42023 12月 8

出版物シリーズ

名前Proceedings - IEEE Global Communications Conference, GLOBECOM
ISSN(印刷版)2334-0983
ISSN(電子版)2576-6813

Conference

Conference2023 IEEE Global Communications Conference, GLOBECOM 2023
国/地域Malaysia
CityKuala Lumpur
Period23/12/423/12/8

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 信号処理

フィンガープリント

「Zero-Trust Empowered Decentralized Security Defense against Poisoning Attacks in SL-IoT: Joint Distance-Accuracy Detection Approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル