δy-exchanges and the conwaygordon theorems

Ryo Nikkuni*, Kouki Taniyama

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

ConwayGordon proved that for every spatial complete graph on six vertices, the sum of the linking numbers over all of the constituent 2-component links is congruent to 1 modulo 2, and for every spatial complete graph on seven vertices, the sum of the Arf invariants over all of the Hamiltonian knots is also congruent to 1 modulo 2. In this paper, we give a ConwayGordon type theorem for any graph which is obtained from the complete graph on six or seven vertices by a finite sequence of △Y-exchanges.

本文言語English
論文番号1250067
ジャーナルJournal of Knot Theory and its Ramifications
21
7
DOI
出版ステータスPublished - 2012 6月

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「δy-exchanges and the conwaygordon theorems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル